

IR-03 ISTR Update

Hunters Point Naval Shipyard BRAC Cleanup Team Meeting

January 22, 2014

ARYL PHOSPHATE SUMMARY

Trixylenyl Phosphate

Aryl Phosphates found at Site IR-03 were identified as Trixylenyl Phosphate

- Used as a flame retardant/plasticizer
- Chemical Characteristics:
 - Very stable
 - oHigh Boiling Point (>300°C)
 - ○Non-volatile
 - ∘Not soluble
 - ○Dense
- Occurs as a mixture of isomers
- No screening levels established
- No available laboratory standards

Example of Trixylenyl Phosphate Isomer

Aryl Phosphates Do Not Volatilize in Ambient Conditions

The theoretical concentration of trixylenyl phosphate in air in a closed container with an infinite source would be below many chemicals' residential indoor air regional screening levels.

Trixylenyl Phosphate
Vapor Pressure

 8.6×10^{-11} atm at $20^{\circ}C$

1.47 μg/m³

Pure Trixylenyl Phosphate Aroclor 1260 Vapor Pressure

 5.3×10^{-8} atm at 25°C

Benzene Vapor Pressure

9.9 ×10⁻² at 20°C

Temperatures Reduce to Below 300°C Within 0.2 Feet of the Heater Wells Casing

ISTR System Modeling

Initial modeling of the Site suggests that conditions near the TCH wells would realize temperatures >100°C after 100 days of heating and temperatures near 300°C within 0.05 m (0.16 ft) of the TCH wells.

Vapor-Phase Aryl Phosphates (created from heating) will be removed from the Vapor Treatment System in Vapor-Liquid Separators operated at lower temperatures

Aqueous-Phase Aryl Phosphates will be Treated by Activated Carbon

Higher K_{oc} values indicate better sorption of chemicals to organic carbon

$$K_{oc} = \frac{\textit{Mass of contaminant sorbed to the soil organic carbon}(\frac{mg}{g})}{\textit{Mass of contaminant in the aqueous phase}(\frac{mg}{mL})}$$

Estimated Log(K _{oc}) Values			
Trixylenyl Phosphate	3.93		
Aroclor 1260	4.52		
Benzene	2.22		
PCE	2.83		

ISTR Process Flow Diagram

Degradation Products of Trixylenyl Phosphate

Degradation products can be formed at high temperatures during combustion

Phosphorous Oxides

Phosphoric Acid

Xylenols

Degradation Products of Trixylenyl Phosphate

- Phosphorous Oxides
 - -Boiling point ranges from 170°C to 360°C
 - -Generally in solid state
 - -Reacts with water to form phosphoric acid
- Xylenols
 - Boiling point ranges from 203°C to 227°C
 - -Generally in solid state
 - Aromatic compounds that will act like petroleum hydrocarbons, such as xylene
- Phosphoric Acid
 - –Boiling point: 158°C

Very little degradation of aryl phosphates will occur due to the high stability of aryl phosphates, the limited amount of NAPL that will reach very high (>300°C) temperatures, and the lack of conditions conducive to combustion

There are no exposure pathways for aryl phosphates during system operation

Exposure Pathway	Complete?	Reason
Inhalation of Volatile Aryl Phosphates at Ambient Temperatures in the VGAC exit stream	No	 Aryl Phosphates are not volatile and will be in the liquid phase at standard conditions Minute aryl phosphates remaining in vapor will be treated by GAC
Inhalation of Volatile Aryl Phosphates at high temperatures due to leaks in the system	No	 The ISTR heater wells would shut down before any surface reaches temperatures that would promote volatile aryl phosphates: above 300°C
Inhalation of Aryl Phosphates in dust from construction activities	No	Extensive dust control measures prevent any contaminated soil from leaving the site
Dermal contact with Aryl Phosphates in NAPL	No	 NAPL will be collected and disposed of off-site Proper PPE will be worn while handling hazardous waste
Dermal contact with Aryl Phosphates in the LGAC exit stream	No	 Aryl Phosphates are not soluble Aryl phosphates remaining in the aqueous phase will be treated by GAC The LGAC exit stream will be re-injected into groundwater

The closed NAPL treatment system will not allow unacceptable exposure to any IR-03 contaminants

ISTR System Monitoring Ensures the System is Functioning Properly

- Daily temperature monitoring throughout the aboveground system
- Daily pressure monitoring throughout the aboveground treatment system
- Daily PID readings from the Vapor GAC influent and effluent
- Weekly TPH Draeger tube measurements and Field GCMS of the Vapor GAC influent and effluent
- Monthly TO-15 sampling of the Vapor GAC effluent
- Weekly water sampling of the Liquid GAC influent and effluent
- Weekly pH monitoring of the Liquid GAC influent
- Breathing zone monitoring with a PID, FID and 4-gas meter

If high temperatures are exceeded at certain points, the heaters will shut down automatically

ISTR Installation

Field Work: Installed Wiring and Piping

Heater well propane and electrical connections – 01/08/14.

TPS Tech personnel working on ISTR system wiring and piping -01/13/14.

Field Work: Installation and Testing of Wiring and Piping

Safety cut-offs for propane lines – 01/21/14.

Shakedown activities, motor power supplies – 01/20/14.

Field Work: Installed the Above Ground Treatment System

Soil vapor and groundwater/product treatment system at the end of 01/17/14.

Field Work: Testing the Treatment System

Leak testing on knock-out vessels - 01/21/14.

Soil vapor chiller testing - 01/20/14.

ISTR Operation Schedule

Activity	Expected Schedule
Begin Testing of Heater Wells	1/27/14 to 1/31/14
System Start-up	2/3/14
Operation and Maintenance	2/3/14 to 5/23/14
System Cool Down	5/25/14 to 5/30/14

ISTR well field at the end of 01/21/14.

